Genetic and environmental influence on diabetic rat embryopathy.
نویسندگان
چکیده
We assessed genetic and environmental influence on fetal outcome in diabetic rat pregnancy. Crossing normal (N) and manifestly diabetic (MD) Wistar Furth (W) and Sprague-Dawley (L) females with W or L males yielded four different fetal genotypes (WW, LL, WL, and LW) in N or MD rat pregnancies for studies. We also evaluated fetal outcome in litters with enhanced or diminished severity of maternal MD state, denoted MD(+)WL and MD(-)LW. The MDWW litters had less malformations and resorptions (0 and 19%) than the MDLL litters (17 and 30%). The MDWL litters (0 and 8%) were less maldeveloped than the MDLW litters (9 and 22%), whereas the MD(+)WL (3 and 23%) and MD(-)LW (1 and 17%) litters showed increased and decreased dysmorphogenesis (compared with MDWL and MDLW litters). The pregnant MDW rats had lower serum levels of glucose, fructosamine, and branched-chain amino acids than the pregnant MDL rats, whereas the pregnant MD(+)W and MD(-)L rats had levels comparable with those of the MDL and MDW rats, respectively. The 8-iso-PGF2α levels of the malformed MDLW offspring were increased compared with the nonmalformed MDLW offspring. Diabetes decreased fetal heart Ret and increased Bmp-4 gene expression in the MDLW offspring and caused decreased GDNF and Shh expression in the malformed fetal mandible of the MDLW offspring. We conclude that the fetal genome controls the embryonic dysmorphogenesis in diabetic pregnancy by instigating a threshold level for the teratological insult and that the maternal genome controls the teratogenic insult by (dys)regulating the maternal metabolism.
منابع مشابه
Renal development in high-glucose ambience and diabetic embryopathy.
Maternal diabetes has an adverse influence on the intrauterine growth of the fetus, which is attributable to the exposure of the mammalian embryo to an abnormal metabolic environment. A sustained exposure of the fetus to such an environment (ie, elevated concentration of glucose), during the first 6 to 8 weeks of gestation in humans may result in diabetic embryopathy, which is characterized by ...
متن کاملPolymorphic susceptibility to the molecular causes of neural tube defects during diabetic embryopathy.
Previously, we demonstrated that neural tube defects (NTDs) are significantly increased in a mouse model of diabetic pregnancy. In addition, expression of Pax-3, a gene encoding a transcription factor required for neural tube development, is significantly decreased. This suggests that diabetic embryopathy results from impaired expression of genes regulating essential morphogenetic processes. He...
متن کاملIncreased mRNA levels of Mn-SOD and catalase in embryos of diabetic rats from a malformation-resistant strain.
Previous studies have suggested that reactive oxygen species (ROS) are mediators in the teratogenic process of diabetic pregnancy. In an animal model for diabetic pregnancy, offspring of the H rat strain show minor dysmorphogenesis when the mother is diabetic, whereas the offspring of diabetic rats of a sister strain, U, display major morphologic malformations. Earlier studies have shown that e...
متن کاملFurther evidence for preaxial hallucal polydactyly as a marker of diabetic embryopathy.
Maternal diabetes has an established aetiological link with developmental abnormalities, and the prevalence of major congenital malformations in the offspring of affected women is approximately 4-8%, compared to the general population risk of about 3%. Hallucal polydactyly, particularly with an unusual proximal placement of the extra digit, has been reported as a distinctive anomaly in diabetic...
متن کاملPPARdelta and its activator PGI2 are reduced in diabetic embryopathy: involvement of PPARdelta activation in lipid metabolic and signalling pathways in rat embryo early organogenesis.
Maternal diabetes significantly increases the risk of congenital malformations, and the mechanisms involved are not yet clarified. This study was designed to address peroxisome proliferator-activated receptor delta (PPARdelta) involvement in diabetic embryopathy. We investigated the concentrations of PPARdelta and its endogenous agonist prostaglandin (PG)I(2), as well as the effect of PPARdelta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 300 3 شماره
صفحات -
تاریخ انتشار 2011